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1. Introduction

3 Duct flows occur in a variety of engineering applications. They are present

• in aircraft and automobile engines, heat exchangers, steam generators, and piping

" "systems. Often, the ducts have a noncircular cross section, which undergoes a

change of shape and size along the length of the duct. The purpose of the present

research project is to develop a calculation procedure for the prediction of flow

in such ducts.

Many duct flows are characterized by the absence of reverse flow or separa-

tion and by a nearly uniform pressure over any cross section. These conditions

are found when the change in the size and shape of the cross section is gradual

rather than sudden. Such flows can be treated as fully parabolic, i.e., they can

be predicted by a marching procedure starting at the inlet plane and proceeding

"- to successive cross-sectional planes downstream. The procedure described in this

report is of the fully parabolic variety.

If significant pressure variations arise over a cross section, they can be

S.' incorporated in a procedure known as partially parabolic. In such a procedure,

the duct length must be swept many times by the marching calculation until the

three-dimensional pressure variations are properly established and used in the flow

calculation. If a reverse flow is present in the duct, a fully elliptic procedure

is needed for its calculation.

The fully parabolic procedure employed in this report calculates the flow over

one cross section at a time. Thus, the computational task is almost the same as

* solving a two-dimensional problem over a domain of arbitrary shape. The method of

Baliga and Patankar (1, 2] was chosen. to be the starting point for this purpose.

In the course of adapting that method, an improvement in the treatment of pressure

* -was worked out. The two-dimensional calculation scheme along with the proposed

improvement is described in Section 2 of this report. The method has been tested
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on a large number of problems to evaluate its correctness, accuracy, convergence,

.* and other behavior. Results of some of the test problems are presented in Section

- 3.

The extension of the two-dimensional method to three-dimensional duct flows

. is described in Section 4. Section 5 is devoted to some applications of the

method. They include the developing flow in some constant-area ducts; but of

particular importance are the calculations for two ducts of varying cross-sectional

area and shape.

d.

L
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2. Method for two-dimensional flows

When a three-dimensional duct flow is treated as fully parabolic in nature,

its calculation is performed by a marching procedure in the main flow direction.

At each marching station, a computationally two-dimensional problem is solved over

the duct cross section. Thus, a procedure for two-dimensional flows forms an

essential building block of the method for three-dimensional parabolic flows. The

two-dimensional procedure employed in the present work is described in this section.

It was intended to employ the two-dimensional finite-element procedure of

* Baliga and Patankar [1, 2] for this building block. However, the treatment of the

pressure field in [21 is somewhat inconvenient; therefore, an improved treatment was

worked out. It is this improved procedure that is described here.

2.1 Governing differential equation

As described in (3], the fluid flow and heat transfer phenomena in steady state

are governed by a general differential equation of the form:

tx Puj, (r 2)+ s (2.1)

where * is the general dependent variable, Puj denotes the mass flow rate cau4ing
the convective transport, r is the diffusion coefficient, and S represents the source

term. The variable * can stand for enthalpy (or temperature), concentration, turbu-
lence energy, or a velocity component. Thus, a solution procedure for any convective

phenomenon should provide a mechanism for solving Eq. (2.1).

2.2 Domain discretization

In the calculation procedure described in [1, 2],the physical domain of inter-

est is discretized into triangular elements as shown in Fig. 2.1. The vertices of

the triangles are called nodes or grid points. The aim of the calculation scheme is

to obtain the values of * at these nodes.

.- ...
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Fig. 2.1 Domain discretization

The algebraic equations for the 0 values at the nodes are obtained by integrating

5 Eq. (2.1) over the polygonal control volume associated with each node. The construc-

tion of these control volumes is also shown in Fig. 2.1. Each triangular element is

• split into three parts by joining its centroid to the centers of the three sides. The

* control volume around a typical node P is composed of the parts of all the neighboring

triangles that contain the point P.

2.3 Discretization equation

The discretization form of Eq. (2.1) is obtained by integrating the differential

" equation over a control volume. Such integral equation consists of the total source

term S over the control volume and the net convecton and diffusion flux across the.

faces of the control volume. As seen from Fig. 2.1, the control-volume faces are

composed of the dashed lines that lie within each triangle. To express the total

flux (i.e., the convection flux plus the diffusion flux) across such a dashed line

in terms of the nodal values of 0, a shape function is required.

As explained in (1], an appropriate shape function for convection-diffusion

problems is one that takes account of the resultant flow direction. The shape

, uI I I ' 'i . . . .::: " " . .".. . . . . . . . . . . . .',' .' . . . . "
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function suggested in [1] and implemented in this work is

* - A + B exp(pUX/) + CY (2.2)

where, as shown in Fig. 2.2, the coordinate X is aligned in the resultant flow dir-

ection, while Y is taken as normal to it. The quantity U represents the magnitude

of the velocity vector. The constants A, B, and C in Eq. (2.2) are expressible in

terms of 1' 02' *3 at the three nodes of the triangle.

3"

-. l

p0

*Fig. 2.2 Coordinate axes for shape function

The use of Eq. (2.2) in the integral equation for the control volume leads to

* the algebraic equation

ap Op Ian ~n+ b (2.3)

*where the subscript nb denotes a neighbor node of P and the summation is taken

* over all the neighbors of P. The coefficients a.p and abrepresent the convection-

diffusion influence, while b contains the integral of the source term S over the

control volume.

" 2.4 Solution of -he discrp'zation equations

The algebraic 22tiuas such as (2.3) form a set of linear simultaneous equa-

S. tions. They can be solved by a variety of methods. In the computer implementation
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• "of the proposed method, the domain discretization is performed by the use of a

line structure. Although this places scme restriction on the shape of the domain

or on the local grid fineness, the technique provides considerable convenience in

node numbering and in the solution of equations. With the nodes arranged on a

line pattern, the line-by-line method [31 becomes the natural choice for solving

the algebraic equations. It is this method that is employed in the present work.

2.5 Calculation of fluid flow

Although the general dependent variable $ can stand for the two velocity com-

- ponents u and v in a two-dimensional flow and thus a calculation procedure for fluid

flow is contained within the general procedure for solving Eq. (2.1), there is an

important complication. The source term S contains the pressure gradient 3p/3x or

3p/y when stands for u or v. The pressure field p represents an extra degree of

freedom and it is indirectly constrained by the requirement that the velocity field

5 must satisfy the continuity equation

a - 0 (2.4)

The combined treatment of the momentum and continuity equations forms the special

* features of a fluid-flow calculation.

If the velocity components and pressire are stored at the same grid points,

?- then the required interpolations of pressure and velocity lead to discretization

-- equations that admit unrealistic zig-zag velocity fields and checkerboard pressure

* fields. This is explained at length in [3]. The remedy adopted in finite-difference

methods is a staggered grid, in which the velocity components are stored at locations

that are displaced (or staggered) relative to the pressure nodes. The same remedy

is not available in finite element methods, since the lines joining adjacent nodes

do not lie along the coordinate directions. The common remedy is a mixed-inter-

t- polation (or unequal-order) schtme, in which pressure is stored at fewer locations

* . * . .



- ' -7- -.
" -..7..

than the velocity components. This practice is employed in [21 and also by earlier

workers.

Although the unequal-order procedure is adequate, it is not entirely satis-

factory. It leads to complications in numbering sequences, control-volume defini-

tions, etc., since the pressure grid and the velocity grid must be handled separa-

tely. Moreover, the coarser grid used for pressure would limit the accuracy of the

solution. If the pressure grid is made sufficiently fine, the associated velocity

10grid becomes excessively fine and thus wasteful. In the interests of convenience

* *.and efficiency, an equal-order procedure is thus sought.

2.6 Discretized momentum equations

Since the momentum equations are special cases of the general differential

.. equation (2.1), they can be cast into the discretization form similar to Eq. (2.3).

Thus

I a u a U +bu (2.5)
P P nb nb

a v - £ + bv (2.6)P P nb Vnb

where b and bv are the integrals (over of the control volume) of the source terms

. (S u - ap/ 3x) and (SV - Pay)

respectively.

" For further rearrangement of the equations, pseudovelocities G and v are

defined by 
O

p= (anb unb)/a (2.7)

and

, Vp - (Tanb vnb)/aP (2.8)

Then the momentum equations (2.5) and (2.6) can be rewritten as

Up + du (Su -3p/ax) (2.9)

.

* . * ,



,

3 and

Vp -p + dv (Sv p/Y) (2.10)

where the subscript c.v. indicates an average value over the control volume. The

multipliers du and dv can be seen to be

du ,, dv AV/a (2.11)

where AV is the volume of the control volume.

No novelty has yet been introduced. If, in the continuity equation, a linear

interpolation of u and v is used, the well-known difficulties associated with

storing all variables at every node would result. The equal-order procedure here

is developed by proposing a different interpolation technique for the continuity

equation. This technique is described next.

" 2.7 Treatment of the continuity equation

The discretized form of Eq. (2.4) would contain mass flow rates across the

boundaries of a typical control volume shown in Fig. 2.1. These flow rates can be

compiled by calculating the flow crossing the three dashed line segments in every

element. A typical element is shown in Fig. 2.3

- 3

tT4\

F m

Fig. 2.3 Control-volume faces within an element

..... .
II ".. 'a-. 

. . . .
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Although it is possible to calculate u and v at any point within the element

. by a linear interpolation between the nodal values of u and v, the practice proposed

*here makes the velocities appearing in the continuity equation directly responsive

"" to the pressure gradient over the element. Thus, for the purpose of the continuity

* equation, the velocity field within an element is calculated from u and 3, where

i - + du (Su - 3p/3x] (2.12)

= + dv [Sv -p/ayj (2.13)
e

where the subscript e indicates the element under consideration. The source terms

Su an v "":'u and S are considered to be uniform over an element. Further, if the pressure p

is described by a linear shape function over the element, the gradients 3p/3x and
3p/Dy also become uniform. The calculation of ', V, d and dv at the nodes has

been outlined in Eqs. (2.7), (2.8), and (2.11). For the calculation of u and

from Eqs. (2.12)-(2.13), the values of u, v , d and dv are considered to vary

*Ilinearly over the element. As a result, the u and values would have a linear

* distribution.

That the i and ' field as given by Eqs. (2.12)-(2.13) is "driven" directly by

Uthe nodal pressures in a given element is the essential feature of this formulation.

This eliminates the possibility of checkerboard pressure fields.

To obtain a discretization equation for pressure, first a discretized form of

the continuity equation is written by integrating it over the typical control

volume shown in Fig. 2.1. The mass flow rates across the faces of the control

volume are expressed in terms of L and Z defined in Eqs. (2.12) - (2.13). The

pressure gradients Dp/3x and 3p/3y are written in terms of the nodal pressure.

The result is the following discretization equation for p, which has the same appear-

ance as Eq. (2.3)

ap pp = E anb Pnb + b (2.14)
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where P denotes a typical node shown in Fig. 2.1, nb stands for a neighbor node

m 3of P, and the summation is taken over all the neighbors. The coefficients ap and

anb arise from the multipliers du and e in Eqs. (2.12)-(2.13). The term b in

Eq. (2.14) contains , , Su , and Sv . Since the structure of Eq. (2.14) is identical

to that of Eq. (2.3), the line-by-line solution method mentioned in Section 2.4 is

*applicable to Eq. (2.14) as well.

- .An alternative form of Eq. (2.14) can be derived by defining a pressure cor-

rection p' such that

p p* + p' (2.15)

where p* is the current estimate or guess for pressure. If the momentum equations

(2.5) - (2.6) are solved by substituting the guessed pressure field p*, the resulting

velocities can be denoted by u* and v* . Consequently, a velocity field u* and v*

- can be obtained from Eqs. (2.12) - (2.13) by substituting p* for p and by calculating

U and V from the xi and v*values. Then the counterpart of Eq. (2.14) can be written

as

ap" P. a p + b (2.16). .. p p = nb Pub

40 where ap and anb are Identical to the corresponding coefficients in Eq. (2.14) and b

- results from the substitution of the u and v field in the continuity equation.

* .2.8 The overall solution procedure

Since all the ingredients of the calculation procedure have been outlined, the

overall procedure can now be described in terms of the various steps in the calcu-

lation sequence.

(1) Start with initial guesses for u, v, u, v, and other relevant variables.

(2) Calculate the coefficients in the momentum equations for u and v.

(3) Hence obtain , , du , and d from Eqs. (2.7), (2.8), and (2.11).

S.(4) Set up Eq. (2.14) and solve it to get a pressure field.

(5) Treating this as p*, solve the momentum equations to obtain u* and v*

* n-



(6) Hence set up the pressure-correction equation (2.16) and solve it.

Use the resulting p' values to correct , v , u* and v* . At this stage, the

corrected field u, v would satisfy continuity.

* - (7) Solve Eq. (2.3) for other relevant dependent variables such as tempera-

ture, concentration, turbulence parameters, etc.

(8) Return to step 2 and repeat until convergence.

I-"
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3. Application of the method to some two-dimensional problems

In this section, the proposed method is applied to three test problems.

3.1 Flow between two concentric rotating cylinders

The flow of an incompressible fluid between two concentric rotating cylinders

is shown schematically in Fig. 3.1. The inner cylinder is supposed to be at rest

while the outer cylinder rotates with angular velocity w. In the (r-e) polar

coordinates, this is a one-dimensional problem with the radial component of velo-

city ur being identically zero. However, in the Cartesian coordinates (x-y),

the problem is fully two-dimensional, with non-vanishing velocity components u and

v along the x and y coordinates respectively. The aim here is to solve this two-

dimensional problem in the x-y coordinates over a square region R shown shaded

* in Fig. 3.1.

* ,. The exact solution

Let ue, ur and p be, respectively, the circumferential velocity, the radial

" velocity and pressure. Also let u and v be the velocity components along the

x and y directions. At this point, the following dimensionless variables are

'. introduced.

u 8  2rW (3.1) . -

Ur
,, 

--

Ur 2r (3.2)

S (P-Po '-

P (3.3)P = )2
p(2rlW)-

* u (3.4)U m2 w

* v (3.5)

r (3.6)

r.

r. . .. .
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X (3.7)
r

* (3.8)

where, p is the fluid density, and p is the reference pressure on inner cylinder

(r-r1). For a radius ratio of 2 between the outer and inner cylinders, as shown

• .in Fig. 3.1, the exact solution to the problem is given by

2 (3.9)
u u -(r

r -(3.10)

and

* *2 _ ) 8 *
. r -in r (3.11)

r

3I  from which it follows that

* 2* (3.12)
U r

r r

and

. - 4) (3.13).. r r"'

Domain discretization

Figure 3.2 shows the discretization of the computational domain into quadri-

laterals and further subdivision of these quadrilaterals into triangular elements.

P9 As can be seen, the uniform N x N grid has a spacing Ax* " 6y* - 6, where,

" / (r2 (3.14)

Results were obtained for four different grid sizes corresponding to N = 9, 13, 17

and 21.

IL
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x

Fig. 3.1 Flow between rotating cylinders
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Results

I (i) Table 3-1(A) shows the variation of percentage error in u at the mid

point of the computational domain with Reynolds number and grid size. T'e percent-

age error is defined as:
U* exactU* computed

percentage error in u* 1 00 ec d (3.15)-" U~exact

where u* is the exact value of u* given by Eq. (3.12) and u*
exact computed

is the numerically computed value.

As can be seen in Table 3-1(A), the percentage error increases with Reynolds

number at any given grid size. For any given Reynolds number, the error decreases

| continuously as the grid is refined. Table 3-1(B) shows the results of unequal

order method of Baliga and Patankar [2] for a 21 x 21 grid. Comparison of these

with the present results for a 21 x 21 grid (Table 3-1(A)) shows that the proposed

U m method gives lower error or better results.

(ii) Let C be the average of the percentage error defined in Eq. (3.15).

Further, let

S- a a p .16)

where a is a constant and p is the so-called 'order of convergence'. If ZI and

e2 are the values of E for grid size 61 and 2 respectively, p can be determined

from

.:: In We ) -In (i2

p 2 (3.17)

Table 3-2(A) shows the variation of C with grid size and Reynolds number for

the equal order method. Also included in this table are the values of order of con-

vergence p obtained using the results of 17 x 17 and 21 x 21 grid. As can be seen,

the percentage error over the domain, C increases with Reynolds number for any fixed

grid size. Also, at any fixed Reynolds number C decreases with increasing grid

size confirming that the computed solution converges to the exact solution as the

grid is refined. From the tabulated values of p, it may be inferred that the order
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TABLE 3-1(A)

m 1 Percentage error in u* at the center of domain - equal order method

Re

Grid 1 10 100 1000

- 9 x 9 .0213 .149 .158 .837

13 x 13 .0107 .067 .268 .342

17 x 17 .00618 .0378 .238 .206

21 x 21 .00404 .0241 .193 .149

TABLE 3-1(B)

Percentage error in u* at the center of domain - unequal order method

Re

Grid 1 10 100 1000

21 x 21 .02 .034 .264 .287

L

SL
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TABLE 3-2(A)

Average percentage error in u* over the domain - equal order method

Re

Grid; 8 1 10 100 1000

9 x 9; .125/r .0609 .0952 .337 .637

13 x 13; .0833/v" .0251 .0442 .222 .345

17 x 17; .0625//wi .0135 .025 .157 .226

21 x 21; .05/2 .00846 .0162 .114 .166

Order of converg- 2.094 1.944 1.434 1.383
ence p, using
results of 17x17
21x21 grids

TABLE 3-2(B)

Average percentage error in u* over the domain - unequal order method
a

Re
Grid; 8 1 10 100 1000

17 x 17; .0625//2 .050 .093 .545 .803

21 x 21; .05/V" .034 .060 .407 .594

Order of con- 1.728 1.964 1.308 1.351
vergence p

|-° .L
|4'
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of convergence of the method is between 1 and 2. 2]
3, I Table 3-2(B) shows the corresponding results for the unequal order method of

Baliga and Patankar [2].

(iii) Fig. 3.3(a) shows a comparison between the exact and computed solution

for pressure distribution along the main diagonal of the computational domain. The

computed results shown are for the finest, i.e., 21 x 21 grid. As is evident, the

computed results are in excellent agreement with the exact solution for all values

of Reynolds number.

Figure 3.3(b) shows the results obtained by using relatively coarse grids for

a fixed Reynolds number of 1. It can be seen that the results are fairly good even

at rather sparse grids. The error in the computed pressure distribution is higher

at points close to the boundary of the domain compared to the errors at points which

are in the core of the domain.

3.2 The driven cavity problem

The problem of flow in a square cavity with one moving wall is sketched in

Fig. 3.4. As shown in this figure, three sides of the square cavity are at rest

while the fourth, the top wall, moves tangentially with a velocity uW. Burgraff

[4] solved this problem using a very fine (52 x 52) grid. Burgraff's results are

taken as a standard of comparison for the results obtained using the proposed equal

order method.

Computational details

The computational domain is shown in Fig. 3.5. The domain discretization is

,- also shown in this figure for a 13 x 13 grid. The grid was kept finer near the

*•  walls than in the core so that, at higher Reynolds numbers, the thin boundary layers

close to the walls could be resolved. The position of the first two grid lines

parallel to each wall was always kept fixed, being at a distance of .05 and .1 f-om

L

the wall. Grid refinement only changed the spacing between the interior grid lines.
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Fig. 3.4 The geometry considered
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Fig. 3.5 Discretization of the domainN
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* Consequently, for a N x N grid,

, :-ii-(. )-(. ) .8(3.18)

(N-5) TN-5

Results

. (i) Figure 3.6(a) shows results for the u velocity along the vertical center-

line (x = L/2). The results of the equal order method are for a 21 x 21 (N=21)

grid. At Reynolds numbers of 1 and 100, the computed results show very good agree-

ment with the results of Burgraff; in particular, the difference between the two

cannot be resolved on the graphical scale of Fig. 3.6(a). At a high Reynolds

- number of 400, the computed results are infair agreement with the results of Burgraff

except close to the region where the gradient of velocity, i.e. au/ y, changes sign.

It is possible that the 21 x 21 grid used for the equal order method is not enough to

resolve the thin boundary layers close to the walls occurring for Re = 400.

U Figure 3.6(b) shows how the solution evolves with grid refinement by the equal

" order method. The three grid sizes shown correspond to N = 9, 13 and 21 with cor-

responding 6 (see Fig. 3.5) of .2, .1 and .05.

(ii) For two-dimensional incompressible flow, the stream function 0. is defined

such that:

U (3. 19): By

V (3.20)
ax

" " from which it follows

2 2~ x(3.21)x2  2 aya

ax a

After the velocity field had been computed, the Poisson equation (3.21) was solved

numericlly to get the stream function at all grid points.

6.
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The streamline plots are shown in Figs. 3.7 - 3.9 for Reynolds number of 1,

100 and 400 respectively. The results computed by the proposed equal order method

show a good agreement with the results of Burgraff. The separated flows at the

bottom corners are correctly picked up at even coarse grids.

3.3 Natural convection in a square cavity

The problem of natural convection in a square cavity, shown schematically in

Fig. 3.10, is used as another test problem. The hot and cold vertical walls are

both isothermal at temperature TC andT respectively. The top and bottom horizontal

walls are adiabatic. The flow is assumed to be incompressible except for the calcu-

lation of driving buoyancy forces. Also, all properties of the fluid are assumed

constant.

Since the problem does not have an exact analytic solution, the results computed

* by the proposed equal order method will be compared to those obtained by a finite

difference technique on a very fine (32 x 32) grid. Because of the fine grid used,

the results of the finite-difference method are regarded as "exact". The domain was

" discretized into a uniform N x N grid as shown in Fig. 3.11.

* Results

The problem is governed by two dimensionless parameters, namely, the Grashof

number and the Prandtl number. In the presented computations, the value of Prandtl

3 4number was kept fixed at 1, while the Grashof number was assigned values 10 , 10

5
and 10.

(i) Figures 3.12-3.14 show the variation of vertical velocity and temperature

3 4 5
along the horizontal mid plane (y/L - .5) for Grashof numbers of 10 , ]a and 10

Evern thougl, the results of the proposed method have been obtained on a coarser grid,

- their accuracy is as good as that given by the fine-grid finite-difference solution.

(ii) The average Nusselt number on the hot wall is defined as

... . L . . - - -" ." .. - - . -- - - , l,
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h Lav

Nuav k (3.22)

where, h is the average heat transfer coefficient defined fromav

%- h =
av (TTC) (3.23)

illC

qa the average heat flux being given by,

L
q q(y)dy (3.24)qav L 0

Table 3-3 shows the results for the average Nusselt number on the hot wall

computed using the equal order method. The results have been cross tabulated

against the grid size and Grashof number. For extrapolating the computed results

to those corresponding to 6 - 0 (infinitely fine grid), a Richardson extrapolation

has been applied. Thus

Nu (6) . Nu (0) + P (3.25)
av av

Table 3-3

Average Nusselt number in the duct, convergence study

NUv for Gr -

Grid 6 103 104 10"

I1 x 11 .1 1.1084 2.2112 4.2611

15 x 15 .07143 1.1125 2.2302 4.4069

19 X 19 .05556 1.1146 2.2408 4.4719

Extrapolated value 1.1202 2.2793 4.5909
as 6

Value obtained by

F D method; 32 x 32 1.1203 2.2825 4.7755
Grid
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where a and p are some constants, and Nu (0) is the value of Nu for 6 = 0. If
av av

Nu av is computed for three values of 6, Equation (3.25) can be inverted to obtain S

Nu (0), a and p. Table 3-3 includes the value of Nu (0).
av av

It is clear from Table 3-3 that the computed values of average Nusselt number

*are in very good agreement with those obtained by the fine-grid finite-difference

method.

L-

I



ii ,, , - .. - .. . ,, . - .i.- .. ,- . . , - . , - • , : . . - - -. -.. - . . :

*1 I'-33-

4. Method for three-dimensional duct flows

* Three-dimensional duct flows can often be treated as fully parabolic, i.e. they

can be solved by a marching procedure that begins at an upstream end and visits suc-

cessive cross sections towards the downstream end. The computational problem at each

cross section is essentially two-dimensional and the procedure described in Section 2

can be employed. The complete procedure for he three-dimensional duct flow is pre-

sented in this section.

4.1 Governing differential equation

For the coordinate system shown in Fig. 4.1, the counterpart of Eq. (2.1) for a

three-dimensional parabolic flow can be written as

-.- (Pu) + v OvO)+ -1 (PwO)

r 21) ++- (r - ) + s (4.1)

-... >. main flow direction

iI

F planeUpstream

Fig. 4.1 Coordinate system
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where the diffusion term in the main-stream direction z has been omitted in

3 -conformity with the boundary-layer (or parabolic-flow) assumption. Once again,

the general dependent variable can stand for enthalpy, concentration, turbulence

parameters, and the velocity components, u, v, and w. When 4 equals u or v, the

source terms S would contain the pressure gradient - 3p/ax or - ap/@y; these will

be treated by the procedure described in Section 2. When 0 stands for the main-

stream velocity w, the source term would include - ap/3z. However, this will be

replaced by - dp/dz, where p represents a cross-sectional mean pressure. To

regard the velocity w to be "driven" by a mean pressure p and not affected by the

local variation of pressure p constitutes the basis of the fully parabolic treat-

ment. If the velocity w is allowed to be influenced by the local pressure p, the

resulting procedure is called partially parabolic. Construction of a partially

*parabolic procedure represents a later task in the current research project.

4.2 Domain discretization

The advantage of a marching or parabolic procedure is that, although the

flow domain is three-dimensional, the entire duct need not be considered at once.

At any given station, the computational problem is to obtain, from the known

values of the variables on an upstream plane (see Fig. 4.1), the unknown values

of the variables on the next downstream plane. Successive repetition of this basic

operation is used to cover the total length of the duct. Restriction of the basic

computational module to the region between two planes implies that computer storage

is needed for the 0 values only on the two planes and not throughout the entire

duct.

The domain is discretized by forming triangular elements over the upstream

and downstream planes. Corresponding typical elements are shown in Fig. 4.2. The

shape of the two planes need not be rectangular; any arbitrary shape of the duct

cross section can be adequately represenred by triangular elements. Further, the
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shape and size of the downstream plane nee6 not match the upstream plane.

Indeed, an ability to handle varying cross sections of arbitrary shape is one of

the objectives of the proposed calculation method. Only when the cross section

changes too rapidly from one station to the next, does the proposed fully parabolic

procedure become inapplicable; then the problem should be solved by a partially

parabolic or even a fully elliptic procedure.

. main flow direction

KUKKtJ P

<*1

L

L
UZ

downstream
plane 

.

upstream
plane

YL

Fig. 4.2 Typical elements on the upstream and downstream planes

The triangulation on the two planes must, however, have the same number of

triangles with a one-to-one correspondence between the elements. Thus, the tri-

angulation of the downstream plane can be regarded as a stretched, compressed, or

distorted version of the triangulation on the upstream plane. The element PKL

shown in Fig. 4.2 corresponds to the element PU-KU-LU on the upstream plane: the

size and orientation of these elements need not be the same. The dashed lines

-0
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show how each triangle is subdivided for the construction of the control volumes.

3 The upstream and downstream faces of a typical control volume resemble the shaded

region shown in Fig. 2.1. The lateral faces of the control volume are formed by

quadrilaterals such as bu-b-d-du formed by the points shown in Fig. 4.2. The

control volume has thus the shape of a prism with the shaded polygonal region in

Fig. 2.1 as its base.

4.3 Discretization equation

The discretization form of Eq. (4.1) is obtained by integrating the equation

over a typical control volume. For the convection and diffusion fluxes in the x

and y directions (across the lateral faces of the control volume), the treatment

described in Section 2.3 including the exponential shape function is employed.

The z-direction convection across the upstream and downstream faces of the control

volume is obtained by assuming that the values and 'p respectively prevail over

5 these faces. Since it is possible that the lateral faces are not exactly parallel

to the z axis, there may also be a z-direction convection across the lateral faces.

This is calculated in terms of the 4 value obtained at the control volume faces

from the shape function (given by Eq. (2.2)).

In expressing the fluxes across the lateral faces, one is faced with the

choice of using the (known) values of $ at the upstream plane, the (unknown) values

* of 4 at the downstream plane, or some combination of these. Thus, the choice is

between the expli..lt, fully implicit, or Crank-Nicolson formulations, or any other

variants of these. As a result of the considerations expressed in [3], the fully

implicit procedure is adapted here. Thus, the known $ values on the upstream

plane are used only in the calculation of the convection through the upstream face

of the control volume. All other influences in the discretization equation are

expressed in term of the unknown $ values on the downstream plane.
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The final discretization equation can be written as

ap p nb nb + ap PU +b (4.2)

where apu is the mass flow rate through the upstream face of the control volume.

With the values PU known from the upstream plane, Eq. (4.2) has the same form

as Eq. (2.3); therefore, the solution scheme outlined in Section 2.4 is appli-

cable to Eq. (4.2) as well.

4.4 Calculation of the overall pressure gradient -4

In a duct flow, the pressure gradient dp/dz driving the z-direction velocity

w is not known beforehand. It must adjust itself so that a given mass flow rate

can be maintained in the duct despite the resistance offered by the duct walls.

Thus, the satisfaction of the overall mass conservation is a constraint that per-

mits the determination of d5/dz.

The discretization equation for the mainstream velocity w can be written along

B the lines of Eq. (4.2). It is

a Wp ab Wb + apU wPU + b

- (AV) (dp/dz) (4.3)

where the pressure-gradient term is written separately; its multiplier AV is the

volume of the control volume. The determination of dp/dz is based on the procedure

suggested by Raithby and Schneider [5]. The main idea of the procedure is that,

for a given set of coefficients, all the w values on the downstream plane are

linearly dependent on dp/dz. Thus

Wp - ap - ap (dp/dz) (4.4)

where p and a are unknown constants associated with each node P. Equation (4.4)
!P

can be substituted into Eq. (4.3). Since the resulting relation must hold for any

. value of dp/dz, two separate equations can be derived: one composed of terms that

do not contain dp/dz and the other composed of the coefficients of dp/dz. Thus,

II
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ap P Eanb 'nb + pwU + b (4.5)

and
Iap Bp lanb + AV (4.6)

These equations have the same general form of Eq. (4.2) and can be solved in a

" .-" similar fashion to obtain ap and Bp for every node.

iP

The total mass flow rate M through the duct is given by

= pp A we  (4.7)

where pp and A denote the density and area associated with the downstream face of

the control volume and the summation is taken over the entire downstream plane.

Combination of Eqs. (4.4) and (4.7) gives

dp/dz Epp ( - Ep p ap)/(Epp Ap Bp) (4.8)

4.5 The overall solution procedure

* The complete solution of a three-dimensional duct flow is obtained by repeating

the solution for one forward step in the z direction. For the first forward step,

the values of on the upstream or the inlet plane are given as a part of the problem

specification. For subsequent forward steps, the 4 values obtained on the downstream

plane of the previous step become available as the upstream-plane values for the

* current step. With this general framework, it is now sufficient to describe the

details of the calculation for one forward step. The various steps in the calculation

sequence are outlined here.

(1) Start with the initial guess for the 4 values for the downstream plane.

Usually, the known 0 values on the upstream plane serve as satisfactory guesses.

(2) Calculate the discretization coefficients for the three momentum equations.

(3) Using these coefficients, solve Eqs. (4.5) and (4.6) to obtain the fields

of a and

(4) Determine dp/dz from Eq. (4.8) and hence obtain the values of w from

Eq. (4.4).
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(5) Now calculate G, 0, du, and d from Eqs. (2.7), (2.8), and (2.11) appropri-

ately written for the three-dimensional control volume.

(6) Hence solve the three-dimensional counterpart of Eq. (2.14) to obtain the

pressure field.

(7) Considering this as p*, solve the cross-stream momentum equations to get u*

- and v

(8) Now set up the pressure-correction equation (2.16) and solve it. Use the

resulting p' values to correct u*, v , u*,and v* .

(9) Solve Eq. (4.2) for other relevant variables such as temperature, concen-

tration, turbulence parameters, etc.

" (10) Return to step 2 and repeat until convergence.

(11) Treat the downstream values as the upstream values for the next forward

step and return to step 1 to begin the calculation sequence for the next Az.

.- 2
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5. Application of the method to some three-dimensional duct flows

In this section, results obtained by applying the proposed method to some

three-dimensional ducts flows are presented. The results are divided into two

. sub-scetions: In Section 5.1, ducts of uniform cross-sectional shape and area

are considered; in Section 5.2, ducts of variable cross section are treated.

5.1 Flow through ducts of uniform cross section

Here, two duct geometries are considered. The first example involves dev-

" eloping flow in a square duct. The second example considers the flow over rod

bundles. This problem demonstrates the capability of the proposed method to

handle flow through ducts of complex (irregular) cross-sectional shapes.

5.1-1 Developing flow in a square duct

The flow situation considered is shown schematically in Fig. 5.1. A uniform

flow enters a square duct at the entrance plane z = 0. As the flow moves along

the duct, boundary layers on the duct walls grow continuously. After a certain

distance, they merge into each other and the flow tends to attain a fully developed

character. Such a fully developed flow is characterized by zero cross-stream

velocities, i.e., u - v - 0, and an axial velocity w which is independent of the

axial location z. Further, in fully developed flow, the axial pressure gradient

dp/dz becomes independent of z and hence p decreases linearly with z.

Computational details

Because of symmetry, only one fourth of the duct is used for computational

purposes. Figure 5.2 shows the cross section of one fourth of the duct and its

discretization into triangular elements. As can be seen, a uniform grid having

N x N grid points is used. For a N x N grid, the spacing between adjacent grid

points is given by 6 where

0.5(5.1)
(N_-i
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/10
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Fig. 5.1 Geometry of the square duct

N

J-1 N

Fig. 5.2 Discretization of the domain
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.:Results

p] (i) The dependence of the computed results on the grid parameters Az and

6 is shown by reference to fRe, where f is the friction factor defined as

f D

dz 1I-2 (5.2)

-m and Re is the Reynolds number given by

Re - pwDRe t (5.3)

Figure 5.3 shows the computed variation of fRe with dimensionless axial

distance. Results obtained by using different step sizes Az and different number

of grid points in the cross-stream plane are shown. The finest grid used for the

results displayed in Fig. 5.3 corresponds to a dimensionless step size of .0005

and a 17 x 17 grid in the cross-stream plane. All the remaining results to be

* presented are based on this grid.

(ii) The variation of mean pressure p with axial distance z is shown in

i Fig. 5.4(a). Also shown are the experimental results of Beavers, et al [6].

The agreement between the computed and experimental results is very good.

Figure 5.4(b) shows the variation of axial velocity at the centerline of the

* duct. The experimental results of Goldstein and Kreid [7] have also been plotted

for comparison. Once again, the agreement between the computed and experimental

. results is very good.

5.1-2 Developing flow over rod bundles

The second test problem involves computation of developing flow over rod

bundles which are arranged in a regular equilateral triangular array. The situ-

ation is shown schematically in Fig. 5.5. Such a flow configuration arises in

nuclear reactors, compact heat exchangers and many other engineering applications.

Computational details

Because of symmetry, the calculation can be confined to the region shown in

Fig. 5.6. The corresponding triangulation is also shown. A 17 x 17g'id was used.
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Fig. 5.5 Flow configuration

Fig. 5.6 Domain discretization
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Figure 5.7(a) shows the variation of pressure p with axial distance

_ for different values of the geometrical parameter s/r . The development of

centerline velocity is shown in Fig. 5.7(b). The fully developed values of the

centerline w are in good agreement with thos obtained by Sparrow and Loeffler [8].

5.2 Flow through ducts of varying cross-sectional shape and area

The most important feature of the proposed method is its capability to

compute the flow through ducts of varying cross-sectional shape and area. Since

no experimental or analytical results are available for such ducts, a procedure is

devised here to "fabricate" exact solutions for developing flow in ducts of varying

cross sections. These exact solutions are used to check the accuracy of the numeri-

cal solution.

5.2-1 Formulation of the exact solutions

The central idea of the method can be summarized as follows:

"i) Propose a velocity field uexact which satisfies the continuity equation

and certain boundary conditions. Also propose a pressure field.

u v
(ii) Compute the source terms in the momentum equations, Su , Sv , and Sw , such

that the velocity field Uexact satisfies the momentum equations.

If the resulting expressions for the source terms are considered as given
.4e

"body forces" in the problem specification, then u is indeed the exact solution~exact

of the flow equations (along with the assumed pressure field).

Case A: Square diffuser with parabolic velocity profile

For a square-sectioned diffuser, shown in Fig. 5.8, the half-side D linearly

increases at a rate of dD/dz - a. The exact solution for the velocity field is

given by

2 -A 2 " 2 )(D 2 x2 ) (5.4)
16 o D6

x (D2_-y2 )(D 2_x 21

u ".(5.5)
p

D--
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9 (22-y (D2-x (5.6)
v T 6 P 0D 26

a o (5.7)

0(5.8)
ay

dz 50 p 5  2 p D4(5.9)

u  9 yx (3(2_2 2_2
S p DD -y ) -Dx

U 81 A 2 
-x (D2_y 2 ) 2 (D2 x 2 2  (5.10)

12T P 1

<B 9M 2_2 2_2= yy [3(D -x )(D-y

81 A2  2 (22)2 ( 2 2 ) 2  (.

128 p 014

4 S 9 ! [(D2_xJ2)+(oZDY) - 2]

81 m2  Y [(D2 x2 2 ( 2 _y2 2 64 D8
12T T D 13 225 (5.12)

where M is the mass flow rate through the duct.
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Case B: Elliptic ducts

Fig. 5.9 Cross section of an elliptic duct0

The cross section of an elliptic duct is shown in Fig. 5.9. The semi-major

axis D and the semi-minor axis D are both functions of the axial coordinate z.
y x

Let the variation of D and D be given by:

DX D + 'Z (5.13)

and

-costnt (5.14)

Y

where y and D are two arbitrary constants. Thus, at z =0, the cross-section of
0

the duct is a circle of radius D 0 The exact solution for the velocity field can

be expressed as

2 M 1 2 _x2) 2_ ( 2-y
7r~~- D X ' (5.15)

D0

M x 1 2 2 2_ 2 (.6
Uj~ Y( -- (DX) + (DY)(516

T x PxY

Xo 
." 

0
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- (D (D _y )] (5.17)
1"p D

-_ o(5.18)m ax

a (5.19)

.. ~*._4M ji 2 2 (5.20)

dz 0P

provided that the source terms in the momentum equations are given by

7" ) [3D + D ] (5.21)

Sv 8 m~ 2_ 2 2
sv . 8; y [(D x X)+(D'.y2)

T2  p D10 x Y
0

2 2 A 1 (5.22)
iPO D x y

0 

.
9E
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and

Sw 0 (5.23)

Here, the coefficient 8 is defined as

dD (5.24)~8 = dz
dz

In the use of the calculation procedure for these test problems, computations

were performed both with and without the momentum source terms. The results of

the former can be comared with the exact solutions, while the latter computation

shows how the flow will behave in reality without the artificial "body forces".

5.2-2 Flow through a square diffuser

With reference to Fig. 5.8, the geometry of the square diffuser is defined

in terms of:

2D -D . + az (5.25)in

Thus,
.

(5.26)

or
D =D O + yzD(5.27)

where
DO = D/2

S in(5.28)

y a c/2 (5.29)

The computations were performed by using a 17 x 17 grid similar in pattern to

the one in Fig. 5.2.

Figure 5.10 shows the variation of axial pressure gradient d/dZ with Z,

where the dimensionless distance Z is defined by

Z - z/(Re Dn) (5.30)
in in

Figure 5.10(a) shows the results with the source terms, while Fig. 5.10(b)

displays the implications of the usual momentum equations. The dashed lines in
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Fig. 5.10(a) represent the exact solution; the agreement can be seen to be very

U good. For the flow without the extra source terms, separation is encountered for

large angles of the diffuser.

The variation of centerline velocity with the axial distance Z is shown in

Fig. 5.11. Once again, good agreement with the exact solution is seen in

Fig. 5.11(a), while the flow separation in absence of the special source terms is

evident in Fig. 5.11(b). The development of the axial velocity profiles for the

case of zero source terms is shown in Fig. 5.12. The profiles at flow separation

.* can be seen to exhibit an inflexion point at the wall.

5.2-3 Flow through an elliptic duct

For the flow through an elliptic duct, the following geometrical relations

are used.

2Dx  Din az (5.31)

2D (D in )-(Din)d

Dy - (2D) (5.32)

SD 0in /2 (5.33)

y - a/2 (5.34)

0 (5.35)

y - D2/ x (5.36)

Thus, at the inlet, the cross section of the duct is a circle of diameter Din

inn(radius DO =f Din /2).

Because of symmetry, only one quarter of the duct needs to be considered. A

cross section of the quarter of the duct, and its discretization into triangular

elements is shown in Fig. 5.13. A 17 x 17 grid is used.
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The variation of dimensionless axial pressure gradient dP/dZ with the axial

distance Z is shown in Fig. 5.14 for a range of values oLRein. The results for the

flow with source terms are displayed in Fig. 5.14(a) and the results without the

source terms are shown in Fig. 5.14(b). It is evident from Fig. 5.14(a) that

the computed results are in good agreement with the exact solution even for large

values of cRe
in*

The variation of axial velocity (w/win) on the semi-major and semi-minor axesini
of the ellipse for the flow with source terms is shown in Fig. 5.15. Also shown

is the exact solution. The agreement between the computed and exact velocity

profiles can be seen to be very good. The velocity profiles for the flow without

source terms are shown in Fig. 5.16.

6. Concluding remarks

This report has described the development of a calculation procedure for

U three-dimensional flow in ducts of varying cross sections. The procedure is dev-

eloped in two stages. First, a calculation scheme for two-dimensional flows is

described. Then, it is used as the solution method over a cross section of a duct

* in a marching procedure. Examples of both two-dimensional flows and three-dimen-

sional duct flows are provided to demonstrate the capabilities of the proposed

procedure.

Further work in this research project consists of additional testing of the

method and the development of pratially parabolic and fully elliptic procedures

for more complex duct flows.
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